Securing IoT Networks through Moving Target Defence

CSCS25

Andrei Vlădescu¹ Prof. Dr. Ion Bica² May 28, 2025

¹University Politehnica of Bucharest (UPB) ² "Ferdinand I" Military Technical Academy

Introduction

Technical Primer

Proposed Architecture

Results & Insights

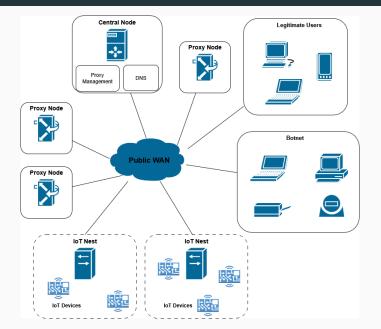
Introduction

- Explosion of IoT devices in smart homes, healthcare, critical infrastructure
- Resource constraints & lack of built-in security
- IoT as attractive targets for large-scale DDoS attacks

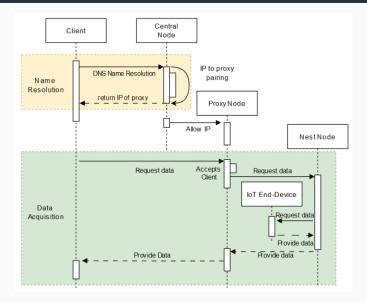
- Evaluate Moving Target Defence (MTD) for IoT security
- Integrate MTD with Software-Defined Networking (SDN)
- Evaluate the solution in a public network

Technical Primer

- Dynamically alters attack surface
- Examples: ASLR, ISR, honeypots/honeynets
- Increases attacker uncertainty and cost


- Separation of control plane (controller) and data planes (switches)
- Northbound API: apps \rightarrow controller
- \bullet Southbound API: controller \rightarrow forwarding devices

- Mutable Networks (MUTE) crypto-shuffled IP/port mapping
- Random Host Mutation (RHM) edge IP shuffling
- OF-RHM (OpenFlow) SDN-based randomization


Proposed Architecture

- Botnet-driven volumetric DDoS (SYN/UDP flooding)
- Target: resource-constrained IoT devices (no IDS/ACL)
- Reconnaissance & Exploitation threat vectors also considered

System Architecture

Defence Workflow

- Case I Botnet is not connected
 - 1. Recon is done to find the IP address of the proxy
 - 2. Botnet floods directly to the IP
 - 3. Botnet is blocked by the proxy

Case II - Botnet is connected

- 1. Bots flood the IPs of the proxies assigned to them
- 2. Proxy will detect the flood and flag the IPs
- 3. Master Node will renew the IP address of the proxies from the ISP's DHCP server
- 4. Legitimate users will be able to connect again to the DNS

Results & Insights

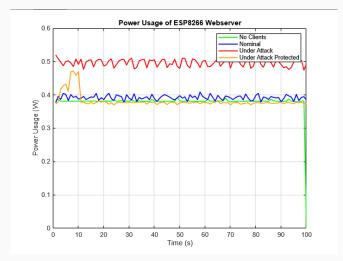
- Simulated Internet inside VMs and Docker
- ESP8266 microcontroller HTTP service
- Locust framework & Ixia Breakingpoint for traffic generation
- Power usage measurement using a lab bench power supply
- Scenarios: baseline, nominal load, volumetric DDoS

Ixia Breakingpoint Data Rate Curve

- Latency
- Failure Rate
- Power Usage

Statistics

Nominal Usage


Statistics

Unprotected Attack

Statistics

Power Draw

• Advantages:

- Cheap-ish
- Increases attacker cost
- Easy to implement in public WAN networks
- Modular, device agnostic approach

• Limitations:

- Overhead from ISP IP changes is a wildcard
- Needs complementary security measures
- Will need to be fine tuned for different services

Thank you!

Any questions?